Policy@Manchester Articles

Expert insight, analysis and comment on key public policy issues

  • All Posts
  • UK Politics
  • Energy and Environment
  • Growth and Inclusion
  • Health and Social Care
  • Urban
  • Science and Engineering
Policy@Manchester Articles: British Politics
You are here: Home / British Politics / Not immaterial: Why the UK must play to its strengths in quantum technology

Not immaterial: Why the UK must play to its strengths in quantum technology

By Richard Curry Filed Under: British Politics, Research and development, Science and Engineering, Science and Technology Posted: April 14, 2023

The UK Science and Technology Framework has recently been announced by Prime Minister Rishi Sunak, with Quantum Technologies (QTs) identified as one of five critical technologies. But what is needed to realise this vision – and should the UK invest everywhere, or target its areas of expertise? Here, Professor Richard Curry outlines how the country can take a leading role in materials for quantum technology, and how government can make this goal a reality.

  • Globally, more than $30 billion of investment in quantum technologies has been declared.
  • The UK alone cannot match this – but it can invest in areas of national expertise, and collaborate with partners on other projects.
  • In particular, the UK should utilise its significant research and industry infrastructure for advanced materials, a key component of the quantum future.

Alongside the framework, the Spring budget included £2.5 billion investment in QTs over the next 10-years, to be delivered by a new Quantum Strategy. This builds upon the UK’s £1 billion National Quantum Technologies Programme (NQTP), established in 2014.

With such political prominence and investment, QTs are clearly expected to impact on our lives and the nation, and their development is going to bring both opportunities and challenges. The opportunity is to harness not only what the QTs themselves promise – delivering advances in sensing and imaging, communications and timing, and computing beyond anything non-QTs could ever provide – but also to build a vibrant ecosystem around QTs that creates industrial growth and national prosperity. A challenge is that the UK is not alone in this aim. Internationally, the UK’s investment is dwarfed by declared existing investment in China ($15 billion), for example. The UK needs to therefore ensure it plays to its strengths if it is to be a ‘QT superpower’.

Find out more about the potential of quantum technologies, and how The University of Manchester is leading the development of new materials.

A material solution

One such strength is the UK’s internationally leading record of materials development, spanning photonics (a £14.5 billion UK sector) through to pharmaceuticals (£40 billion). To date, the NQTP has heavily leveraged the materials ecosystem around photonics, and also those of the semiconductor industry; the latter also being one of the five critical technologies identified within the Science and Technology Framework and the focus of a strategy review. As QT development becomes more advanced, however, it is the availability of advanced materials specially developed for QTs that is a cause of major concern. These advanced materials are required at the heart of the quantum systems, in the surrounding environment in which they operate, and in enabling connectivity between QT systems to other quantum and non-quantum technologies.

To make further significant progress in QT development, and retain an internationally leading position, we cannot rely on the existing set of advanced materials to deliver the capability required. As an example, some of the most demanding material challenges surround the realisation of quantum computing, where solutions will provide substantial commercial opportunities. These challenges include:

  • Improved and new characterisation methods to more clearly understand and mitigate the loss of quantum information during operation
  • Enhanced material purity and interface control to enable better control of interactions at the atomic level
  • Discovery of new materials systems that are robust to, and support the scaling of, QT at operating temperatures that do not require restrictive cooling infrastructure.

Presently, a number of candidate materials are vying to become the system of choice for quantum computer ‘qubits’ – the counterpart to the binary ‘bit’ in conventional computing. Each has their own advantages and disadvantages, and the discovery of new systems has the potential to provide a paradigm shift in QT development. However, whichever approach is eventually adopted it will require sophisticated materials science to get it to work at scale.

Investing where we can, collaborating where we cannot

Fortunately, the UK has a vibrant body of internationally-leading materials expertise on which to draw. These include those in national bodies, such as the National Physical Laboratory and the Henry Royce Institute, our great university sector, and within small and medium sized industry through to multi-national companies. The recent funding (£630k) by the Engineering and Physical Sciences Research Council (EPSRC) of the Materials for Quantum Network (M4QN) – in which The University of Manchester is a leading partner – has provided a mechanism for the NQTP to access and connect broad areas of this talent resource. It is, however, essential that materials research itself, focused on the specific needs of QTs, is deeply embedded within the NQTP if the UK is to remain competitive.

The UK must not isolate itself from other international quantum programmes, with ~$30 billion of declared international investment by 2022. The €1 billion European Quantum Flagship and QuantERA programmes are driving collaboration across Europe. Within the United States a significant variety of initiatives are underway, many coordinated by the National Quantum Initiative, including dedicated materials programmes such as the $115 million Superconducting Quantum Materials and Systems Center at Fermilab. This focused quantum materials centre alone has comparable funding to the entire budget (£100 million) for the five EPSRC quantum technology hubs currently soliciting proposals.

With scientifically leading quantum programmes also underway in Canada and Australia, as the UK looks to deliver on the international ambitions of the Science and Technology Framework, engaging our researchers via international cooperation is of mutual benefit and will allow them to remain at the fore of developments. Ensuring mechanisms are put in place to enable this, under the guidance of the Trusted Research and Innovation framework, would be timely – and indeed, essential – in maintaining a leading quantum programme.

Where do we want to be – and how do we get there?

The ultimate aim, beyond the creation of QTs and ensuring ‘sovereign capability’ in this transformative field, is the creation of a quantum ecosystem within the UK that drives investment and prosperity. This aim is realistic if we build on the foundations established by the NQTP, draw upon the existing supporting photonics industry, and harness our advanced materials capability – especially that which aligns with the semiconductor industry which itself is the focus of a review and draft national strategy. Evidence of this can, for example, be seen in the growing investment and activity in quantum computing at the Sci-Tec Daresbury site in the North-West of the UK. Home of the UKRI Daresbury Laboratory, the site has recently been chosen as the European site by PSIQuantum for its advanced research and development (R&D) centre, supported by £9 million investment from the UK Government. This complements the existing £210 million partnership at the site between IBM and the STFC Hartree Centre that brings together innovative research and development on artificial intelligence (AI) and quantum computing.

This regional concentration of internationally leading QT industry-based R&D provides a focus around which a wider ecosystem can be built, drawing on the world leading research base provided by local universities including The University of Manchester, the home of advanced materials and the Henry Royce Institute. These and our other UK universities also offer the ability to provide the skills training programmes to ensure that the talent pipeline that cuts across QT and the supporting sectors of materials, computer science and engineering. Other key sectors will also benefit. For example, QTs have the potential to revolutionise decision making processes (tackling more complex problems more quickly), which will impact the service industries that account for 79% of total UK economic output.

To enable the UK to reach the goals embedded within the Quantum Strategy, policymakers and industry must ensure the country harnesses the opportunities at hand. These include:

  • Embedding advanced materials expertise within the NQTP, leveraging the substantial capital investment within UK academia that supports this
  • Building on and accelerating the formation of a regional nexus centred around internationally leading industrial investment in QT.
  • Strategic engagement with international programmes, recognising that these will draw talent and innovation to the UK and support our own sovereign programmes.
  • Ensuring that we invest in the development of a future workforce with the skills sets necessary to support a leading QT ecosystem.

Tagged With: advanced materials, Business Energy & Industry, digital, Industry 4.0, innovation, Royce, science & engineering, technology

About Richard Curry

Richard Curry is Professor of Advanced Electronic Materials at The University of Manchester, where he holds the position of Vice-Dean Research and Innovation in the Faulty of Science and Engineering. He is a Research Area Lead of the Henry Royce Institute Atoms to Devices Theme, and co-lead of the EPSRC Materials for Quantum Network.

Our RSS feed

Receive our latest content and timely updates by subscribing to our RSS feed.

 Subscribe in your reader

More from this author

  • Saving lives and money through early detection: Lynch syndrome case study

Become a contributor

Would you like to write for us on a public policy issue? Get in touch with a member of the team, ask for our editorial guidelines, or access our online training toolkit (UoM login required).

Disclaimer

Articles give the views of the author, and are not necessarily those of The University of Manchester.

Policy@Manchester

Manchester Policy Articles is an initiative from Policy@Manchester. Visit our web site to find out more

Contact Us

policy@manchester.ac.uk
t: +44 (0) 161 275 3038
The University of Manchester, Oxford Road, Manchester M13 9PL, UK

Copyright © 2025 · Policy Blog 2 on Genesis Framework · WordPress · Log in